Field Case Study #3

Impact of Diesel vs Water Overflush on Squeeze Treatment Life

Eric Mackay
Case Study: Well A4

- Campos Basin, offshore Brazil
- Water depth from 2,300 to 2,800 ft
- Initial average production of 60,000 bpd, dropped to 50,000 bpd due to early seawater breakthrough leading to BaSO4 scale.
- Three conventional squeezes into 5 layer heterogeneous formation
Conventional Squeeze Design
Conventional Water Overflush

3rd design for squeeze treatment to well A4 - Radial 5 layer squeeze model, seawater overflush - New squeeze field isotherm to fit field data.

Cwell Wprd Inhibitor Return Concentration in ppm (log scale)

R < MIC 0 1
G >> MIC
Y ≈ MIC

Cum. Water Vol. in 1000 bbls (linear scale)
Key Challenges in Well A4

- Low reservoir energy:
 - difficult to restart wells after treatments

- Subsea wells:
 - hydrate risk on flow back

- Use of diesel overflush instead of water resulted in shorter treatment lives:
 - Why?
 - How to overcome this?
Diesel Overflush
Mixed Fluid Squeeze Design

Desorption during overflush important for propagation
Split Diesel/Water Overflush

- 100% (100% diesel-0% water)
- 75% (75% diesel-25% water)
- 50% (50% diesel-50% water)
- 25% (25% diesel-75% water)
- 0% (0% diesel-100% water)
Operator stopped using 100% diesel overflushes and switched to 50% water – 50% diesel instead, improving squeeze lives by 15%

Another operator saved £3M per well per year by reducing the frequency of squeeze treatments from a treatment every six months to a yearly treatment – based on SQUEEZE calculations.
Current FAST 6 Sponsors

- ADNOC
- BAKER HUGHES
- energi SIMULATION
- equinor
- multi-chem A HALLIBURTON SERVICE
- NALCO Champion An Ecolab Company
- OGIC Oil & Gas Innovation Centre
- BR PETROBRAS
- PETRONAS
- REPSOL SINOPEC Resources UK
- Schlumberger
- Shell
- vedanta transforming elements
- TOTAL
- wintershall Shaping the future.